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LOSS OF A PASSIVE IMPURITY IN A TURBULENT VORTEX RING 

J 
E. I. Andriankin and P. A. Pryadkin UDC 532.72 

A diffusion boundary-layer approximation is used to obtain an analytic solution to 
the problem of the loss of a passive impurity by a turbulent vortex ring. 

Turbulent vortex rings have long interested many investigators due to the relative ease 
of obtaining them, the transfer of impurities and their travel over long distances, the long- 
term stability of the rings, etc. Thus, here we study the possibility of making practical 
use of vortex rings to remove smoke and harmful gases at industrial plants, to remove contami- 
nants from the walls of various types of containers, etc. 

There are many methods of organizing vortex rings [i]: surface explosion of a large 
quantity of explosive [2], injection of a liquid of one density into a liquid medium of a 
different density [3, 4], etc. Henceforth, for the sake of definiteness we will have in mind 
a turbulent vortex ring (TVR) obtained in a container filled with smoke (a Wood box [5]) and 
having an explosive charge on its bottom. However, the theory proposed here is applicable 
for other methods of producing vortex rings. 

There are two types of TVR's created by a vortex generator: toroidal [3, 6, 7], which 
loses nearly all of the impurity it transports during its motion; ellipsoidal [8]. In 
contrast to the former, the latter are formed by preliminary agitation of the flow, such as by 
the installation of a metal grid in the working part of the generator nozzle. In this case, 
small quantities of impurity are lost in the wake. The resulting vortex consists of a core -- 
a toroidal vortex -- surrounded by a moving shell having the form in the direction of motion of 
an oblate ellipsoid of revolution. Continuity of the velocity field outside and inside the 
vortex is maintained (similar to the motion of a drop in a liquid). The main losses of passive 
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impurity, i.e., impurities not affecting the motion of the TVR, generally occur in this 
instance in a short initial time interval starting from the moment to of formation of the 
vortex and the beginning of self-similar motion. These losses are small compared to the 
total (maximum) quantity of impurity transported by the vortex, as was confirmed in an experi- 
ment [8]. 

A problem was formulated in [9, I0] for finding the velocity field of a TVR and the 
concentration of passive impurity transported by it on the basis of averaged equations de- 
scribing turbulent flow in an incompressible medium (Helmholtz equations) and convective dif- 
fusion in cylindrical coordinates (r, z) connected with the center of the outlet hole of a 
vortex generator. Here, the turbulent character of motion was accounted for by introducing 
the eddy viscosity coefficient v,(t). As follows from experiments, over a significant length 
of vortex travel, this coefficient is many times greater than the molecular viscosity v. As 
a result, it was established that these processes are self-similar, and the initial equations in 
self-similar variables were transformed into steady equations. Approximate relations were 
found to describe the time dependence of the path travelled by the vortex: 

L (t) " Roa-'[(1 4- 4~VoRT~t) ~/4 - -  1], (1) 

and the time dependence of the radius of the vortex 

n (t) - ~o + ~L (t). 

Chosen here as the initial moment was the beginning of self-similar motion, which delimits the 
interval of time to of the motion of the TVR from the generator nozzle to the establishment of 
similitude (here, the vortex travels a certain distance -- usually 4-5 diameters of the nozzle 
aperture): 

1 Ro 
- - 4 -  ~ v ~  ' (2) 

is a constant determined by comparison of the calculated results with experimental results 
and thus found to be a small quantity on the order of 10-2-10-3; it should also be noted that 
the radius of the vortex and the distance it travels are the values r = R(t) and z = L(t) at 
which the vorticity ~(t, r, z) has a maximum with a fixed t. 

However, given this formulation of the problem, it is very complicated to find the dis- 
tribution of velocity and vorticity in the TVR, as well as the concentration of impurity 
transported by it. This is because the cylindrical coordinate poorly reflect the geometric 
features of the structure of the vortex. 

Henceforth examining ellipsoidal TVR's formed by preliminary agitation of the flow, it 
can be concluded on the basis of the general similitude of the process and the experimental 
results in [I, 8, ii] that the form of the vortex shell changes during its motion over time in 
a manner geometrically similar to the original vortex, i.e., it has the form of an oblate 
ellipsoid of revolution expanding in the direction of motion (Fig. i). 

Assuming that the center of the ellipsoid coincides with the center of the vortex, we Use 
a(t), b(t), and s(t) to designate running values of the major semiaxis, minor semiaxis, and 
focal length of the ellipsoidal shell. Then by virtue of the similitude of the process, 
these quantities will be linked with their initial values a(t0) = a0, b(t0) = b0, s(t0) = So 
by the relations 

a(t) =(Pot)~/4a,, a,  == a o (Polo) -1/4, 

b (t)= (Pot)l/4b,, b, : b o (Poto) -1/4, 
s ( t )  t / a ~ ( t )  - -  b 2 ( t ) .  ~ ~4 , - ( P o t )  ' s , ,  s ,  = so (Poto) -1/4 

(3) 

where P0 is the momentum of the vortex. Based on the conservation law [9, I0] in an infinite 
viscous incompressible liquid, P0 is a constant (independent of time) under the conditions 
that vorticity decays sufficiently rapidly at infinity. The value of P0 
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~] =~/2 

Z~ ,,P 

- ? y .  
F i g .  1.  E l l i p s o i d a l  v o r t e x .  

1 1 /5 , ,  "3 Po = ~ q~ rot%, 

/ (%)]} q ~ 16 ~ ~ exp - -  1 - -  ] /~2  -a/2 err ,~ 84,633. 
(4) 

Equations (3) give the self-similar law of expansion of the shell of an ellipsoidal TVR. 
Knowing a0 and b0, it is possible to use (3) to find the form of the shell at any moment of 
time, i.e., to find the quantities a(t) and b(t). The values of a0 and b0 are determined 
either by experiment or by solving the hydrodynamic problem. 

We will introduce a system of coordinates, connected with the center of the vortex, for 
an oblate ellipsoid of revolution (~, ~, ~) using the formulas in [12]: (0~<oo, 0 ~ , 0 ~  

q~ ~ 2~): 

Z = s ( t )  sh~cos~l, r----s(t) ch~sin~l ,  (5) 

where (Z, r) is a cylindrical system of coordinates with its origin at the center of the 
vortex. Here 

Z -- z -- L (t) -- z (to); 

( ' / [  ,-'" , ' ) ]  ~1/4 . . . .  1/4 1 -a/2 exp 1 -- ]/~ err ( ~ k -~, z (to) = ~ o  Xo V,) to , Xo (Z) = - - g -  a ,----~- 

~ 161 ~-3/2exp - -  l - - ] / ~ 2 - 3 / : Z e r f ~ , ~ ) ] ~  i :~0"1087~x2/5' 

(6) 

where (z, r) is a cylindrical system of coordinates referred to the center of the outlet hole 
of the vortex generator (the coordinate r remains unchanged), while z(t0) is the initial dis- 
tance (from the hole of the generator to the formation of the vortex and the beginning of 
self-similar motion) [9, i0]. It should be noted that for this coordinate system, the coor- 
dinate surfaces ~ = const are oblate ellipsoids of revolution which are confocal for each 
moment of time (Fig. i). Here, the equation of the surface the ellipsoidal shell of the 
vortex will have the form ~ = ~0- Meanwhile, as it is easy to see from (3) and (5): 

~o ~ arth [b (t)/a (t)] == arth (bo/ao). 

Thus, the boundary surface of the TVR, exposed to an incoming flowwith the velocity 
V~(t) =dL/dt, has the fixed shape of an ellipsoid of revolution which is oblate in the direction 
of motion in dimensionless coordinates. The forward critical inflow point and the rear criti- 
cal outflow point on the surface of the TVR shell are respectively (~=~0,~-=~) and (~=~0, ~+=0). 

Using an axisymmetric formulation, we will examine an external problem on convective dif- 
fusion of a passive impurity into the environment from the surface of an independently moving 
ellipsoidal TVR having the form of an ellipsoid of revolution oblate in the direction of 
motion. It should be noted that the region of the core of the vortex requires special 

24 



additional studies due to features of the effect of vorticity in this region on mass transfer 
inside the elliposidal boundary of the vortex [13, 14]. 

In the case of turbulent motion of the fluid, the transport of impurities in the absence 
of boundaries can be described by introducing a special eddy diffusion coefficient D,. As the 
value of the eddy viscosity coefficient ~,, the value of this coefficient is determined by 
the characteristic scale of motion, i.e., by the size and velocity of the vortex. It is 
known from experiments with turbulent jets [15] that to within a factor on the order of unity 
(u ~ 1.2-1.3), D, coincides with the eddy viscosity coefficient [i, 9, i0]: 

D ,  (t) = W ,  (t), ~ ,  (0  = ~p~/2 t -~/~ . (7 )  

Then the equation of convective diffusion describing the distribution of the concen- 
tration C of the passive impurity during the motion of the TVR has the form [i, 9, i0]: 

a c / a t  + (v .  v) c = vv,  (t) AC. (8 )  

Here, it was considered that on the section of self-similar motion of the vortex being 
examined, the molecular diffusion coefficient D can be ignored compared to the eddy diffusion 
coefficient D,. The velocity field V is found from solution of the hydrodynamic problem, 
while by the concentration C we mean the quantity of impurity per unit volume of the medium. 

In the system of coordinates (6, ~), the process of loss of the passive impurity by the 
vortex will be described by equation of convective diffusion (8) in dimensionless form 
( ' 0 < ~  =~]~<<1) : 

3 c + H  U~ _--_ 8H~H ~ + O 1 Oc 
4 ' 

H = s .  1 (ch2~ - sin'~l) - I / 2 ,  H v ~ = s u  1 ( ch~s in r l ) - I  , 

U~(~, ~ l ) ~ V ~ ( t ,  ~, B ) P o ~ / ' t  a / ' ,  Un(~, r l ) = V ~ ( t  ' ~, ~ l ) p ~ ' / "  t3/4, ( 9 )  

U~ = - -  H H ~  . , U n = H H ~  ---~-,  ~ (~, rl) = ~ (t, ~, ~1) p~-3/4 t r / 4 ,  

c = c (~, n) = Qo  ~ (Pot)3/4c (t, ~, n); 

it being considered here that the impurity is dispersed by the vortex into an environment un- 
contaminated by suspended particles, so that 

C = c  = 0, (lO) 

while the concentration of impurity on the moving ellipsoidal surface of the TVR during the 
entire time of the self-similar process changes according to the law (Fig. i): 

Co ~ Qo (Pot)-3/ 4 co, (Co = const), ( l l )  

which means that at the moment of time to of the beginning of self-similar motion, all of the 
impurity is uniformly distributed in the vortex with a concentration C0(t~ =Q~(P0~)-3/4c0. 
During subsequent motion impurity is removed into the environment from the shell of the TVR in 
accordance with self-similar law (ii). 

Since the small parameter e =? % is a multiplier in Eq. (9) with the higher derivatives, 
we have the classical problem of a diffusion boundary layer adjacent to the surface of a vortex 
within which diffusion transport of the substance along this surface (along ~) can be ignored 
compared to transport in the direction normal to it (along 6) [16, 17]. With allowance for 
this, we write the equation of convective diffusion (9) in a diffusion boundary layer approxi- 
mation 

- -  - -  c - -  H 2 H ,  eH~H,  - - "  ( 1 2 )  

and the corresponding boundary conditions 
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c (~ = ~o, ~) = co, c (~-~ oo, n ) - +  O, c (~, ~ = ~ -  = ~)  = O, (13) 

the first two of which are the conditions on the surface of the vortex shell and at infinity. 
The last condition expresses the absence of suspended particles in the hydrodynamic flow on the 
inflow path n- = ~ [17]. The solution of boundary-value problem (12-13) gives the distri- 
bution of the dimensionless concentration of the impurity lost by the vortex to the uncontami- 
nated environment during its motion. 

To obtain this, we replace the variables (~, ~) with the von Mises variables (~, ~) [18]. 
As a result, Eq. (12) takes the form 

3 Oc -2 2 O~c 
- - - - c  + HoUon -- eHo~ U o n - -  (14)  

4 On O ~  ' 

where  t h e  s u b s c r i p t  0 h e n c e f o r t h  i n d i c a t e s  t h a t  t h e  c o r r e s p o n d i n g  q u a n t i t i e s  d e p e n d  on r = r  
~, i.e., are taken on the surface of the vortex shell. 

Let us change over from the variables (~, ~) to the variables (~, o), where 

a := - - e s ,  (1 + g~2) 112 f (HoHo,~)_tUoxdk; Ho ---- s .  1 (~** -6 ~l*~) - r /2 ,  
- - l '  

Ho~ -= s .  1 [(1 + ~ '  )(1 - - n * *  ) ] -1 /2 ,  n* = cos ~1, 

~* = sh ~, (~* ~ sh ~o). 

(15) 

Then, introducing the new function 

u = u (% ~1") ---- - - e e x p  [--~ 01")]; 
~1" 

tp (rl*) -- 3 - -  .t H o  t (k) U~" (1 - -  M)-U2dk, 
4 if ,  

(16) 

where ~* is a certain fixed value of ~*, we find that Eq. (14) and boundary conditions (13) 
take the following forms: 

au/Oa = O~ulOtp'; 

~ = - O ,  a=- -coexp{- -cp[~ l* (o) ]} ;  ~]~.--~ o o, u---~O; ~ = 0 ,  u =  O. 

(17) 

(18) 

The soluti0n of boundary-value problem (17)-(18) is the function [19] 

(Y 

1 I < u (% ~) = 2 ] / ~  ~ (c~ - -  z) -3/2 exp . 4 (o" -- .  z) q~ ' 

0 

dz. 

Using Eq. (16) to change over to the concentration, we finally obtain the solution of 
the problem in general form 

ly 

f { * } Co ~ exp [qo (rl*)l (a -- z) -312 exp q~ [rl* (z)] dz, 
c - -  2 V ~  . 4 ( a - -  z) 

0 

where o and ~(n*) are expressed by Eqs. (15) and (16) [16]. 

The local j and total I diffusion flows of the passive impurity from the surface of the 
vortex shell, representing the rates of removal of impurity from a unit surface and from the 
entire surface of the shell, respectively, are determined as follows at a given moment of 
time [17] 

\ On )2~ \h~ ~ ]~=G ~. (19) 

(h~ = (Pot)-ll4H ~- s -~ (t) (ch2~- sin~q)-'!2), 
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where n is the vector of a unit normal to the surface {~:~ ..... $0} of the vortex shell. 

Introducing the dimensionless diffusion flows j and I by means of the formulas 

[= jQoP~ 1/~ t-~/~, f : :  IOot-i 

and considering (19), we obtain the following expressions for these flows 

] : y%Ho \ - - ~ , .  ~=~o I = 2 # .  = . H : ~  i (?c d~]. 

0 0 

( 2 0 )  

The total amount of impurity Io lost by the TVR during its motion over the period of 
time z(t0~T~l~) is represented as 

"c x: 

.'i o ('c) = ,f Idt= ( IOot-'dt = Qol In (*/to). 
to . ?;'~ 

( 2 1 )  

Using (9), (15), and (20), we write the dimensionless total diffusion flow in the form 

1 0 

--I (~(I) 

( 2 2 )  

Since 0<~=7~<<I and since the integrand functions in (15) are continuous and bounded, 
we expand (Oc/O~),=o into a power series in the small parameter o and integrate term by term 
in accordance with (22). As a result, leaving the dominant terms of the expansion, we obtain 
an approximate expression for the total diffusion flow: 

I = 2:~co 3 / ~  : 2~ ]/8--co ] / 1 %  (1)1 , 
1 

% (I) = --s, (I -}- ~g:~) t/2 S (HoHoO -~Uo~,d%" 
_ 1  

( 2 3 )  

Thus, to determine the diffusion flow it is necessary to know the flow field on the 
boundary of the TVR shell ~ = ~0, i.e., Uo n. Since the turbulent flow is concentrated mainly 
within the ellipsoidal boundary of the vortex and turbulence decays rapidly outside this boundary 
going away from it [1-4, 7-11], the results in [20] will be used to approximately determine the 
flow field outside the TVR shell. This study examined the velocity distribution in steady laminar 
flow about a gas bubble having the form of an ellipsoid of revolution oblate in the direction of 
the incoming flow. The bubble was in a low-viscosity fluid (here, the Reynoldsnumber Re, 
taken on the minor semiaxis b of the ellipsoid, was assumed to be large). 

Considering that the TVR moves at a variable velocity, we subdivide the interval of time 
of self-similar motion into N small segments. Within each of these segments, the rate of 
flow for the vortex can be approximately taken as a constant V~(ti): 

U~L --- V= (h)Po ~/~ t~/~. 

The thus-introduced piecewise-constant velocity of the vortex allows us to examine the 
problem as being quasisteady, and on each small segment of the time of motion of the vortex 
we use the results in [20], according to which (I~e=V~(ti)b(t~)/v>>1): 

Vow. , , , , ,  - o  = =- -7 r~c L'on*, ~o :q*==~  1@ ~'~ " ~'~-~- ~*~ (2/4) 

V~=) [ 2 z(~) ~ ' + n  ~~ 
.,~.=u~ 3 | A(~, ,t*). ~* 1 __)i*' d 
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t, see. 

(m/set) and L(t) (m). 

Here and in subsequent calculations, 

, 

2 ?  ~$~(1--x)  ~ dx 

J *~ + ] / x  (n*)-X (x) ' 
- -1  

2 ( x +  1)~(2--x) .  x ( x )  = --if- 

the subscript i is omitted for the sake of clarity. 

is 

(24) 

Inserting this expression for velocity into (23), we find that the total diffusion flow 

I = 2gco ' t /~ ; / to ,  (1)t, a ,  (1) = o!, u ( i ) +  Re -112 a~, ~) (1), 

~1) (1) = --4/3s,U= % (~o), 

,"'-U �9 3 ~ ,~i~ I j" (~o + ~t*')A,(~o, n*)dn*, (25)  o(, 2~ (1) ~-- 2 l /  - - ~  U=s.V~x (~o) ~o ( + ~*~ -I 

�9 11/4.-  . 
A,(~o, ~]*)-- 3 ~2 A(~o, n*), 

(0 <~ s ---- 71o << I, O<Re-ll2(~l). 

To make concrete use of the formulas, we will examine the problem of the loss of a pas- 
sive impurity by a TVR obtained experimentally by the explosion of a detonating fuse on the 
bottom of a cylindrical tank. Here, the initial parameters of the vortex propagating into 
t h e  a t m o s p h e r e  were  a s  f o l l o w s :  Reo = Vobolv == 1,65.106, Ro = 55 era,, Vo = 4570emlsec, v := 0,152 em2/sec, 
bo/ao = b(t)/a(t) = 0 . 5 0 2 ,  s(t)/a(t) = Ro]ao = 0,865, ao = 63,61 cm, bo = 32 cm~ ~o == 0.553, ~o = 0.581,: 
o~ = 3,13.10-~: 

Using Eqs. (2-4), (6), and (24), we find: t~ = 0.961~, Po~= 5,077-I09cm4/s~,~ = 0,0108, s, ~ 0,208, 
%(~0) = 1.64, 8----?~---- 1,25}~----0,0135. Taking these values into account and numerically integrating the 
double integral in the expression:for -(~) (25), (24) we obtain: U. 

~(,I ) (1) ---- --0.327, crt,2)(1)= 1.612. 

From this we arrive at the relation for the dimensionless diffusion flow (25) of the 
passive impurity from the surface of the vortex. This relation is valid for each small segment 
of time of self-similar motion, in which the velocity of the vortex is a constant: 

I -- 2~co l /~' l / t(~,  (1)] ----- 0.731coV01327 - -  1.612 Re -112, 

Re = V~ (h) b (h) v -i .  

Proceeding on the basis of (21), we have the following equations to express the total 
amount of passive impurity I0 lost by the TVR during the time of experimental observation 6t== 

tN--t0~ ].45 sec (t^~ 2.41 sec, t0~0.96 see, which is broken down into N small segments 6i = t~--t~_~ 
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N 

7o (t x - -2,41)  ---- Qo ~ ln(ti/ti_ 1) < [ i  > , 
i = 1  

! 
( I i > ---- - ~ -  [ I  (t 0 - -  I ( t i_l)  ]. 

(26) 

The function Q$~T0(t)c~l.105 is shown in Fig. 2. 

Figure 3 (curves 1 and 2, respectively) show the graphs of the velocity of the vortex 
and the path it travels during the time interval 6t based on Eq. (I) 

V= (t~) = 4437t73/4;  L (t~) = 17746 (t~ /4  -- 0.9902), 

and this data agrees very well with the experimental results in [ii]. 

Thus, it can be concluded from this that most mass exchange of passive impurity between 
the TVR and environment occurs in the initial seconds of motion of the vortex (see Fig. 2 and 
(26)), and during subsequent motion the ability of the vortex to lose the impurity rapidly 
decreases. This is also clear from the fact that the difference between the concentrations 
far from the vortex and on its surface according to (I0) and (ii), Co = Qo(Pot)-3/4Co , rapid- 
ly decreases with time, and eddy diffusion decays during motion of the TVR: D*(t) % t-I/2(see 
( 7 ) ) .  

In conclusion, we note that the mathematical model presented here not only approximately 
determines the amount of passive impurity lost by an ellipsoidal TVR during its motion to a 
medium uncontaminated by suspended particles, but it also explains the process of convective 
mass exchange between the vortex and the medium due to the presence of a diffusion boundary 
layer near the ellipsoidal shell of the TVR. 

NOTATION 

tl, time of self-similar motion of the vortex; V0, velocity of the vortex at the 
begimn~ng of self-similar motion; R0, radius of vortex at the beginning of self-similar 
motion; ~:=~(g ~. N) , dimensional stream function; ~=~(~, ~), dimensionless stream function; 
c = c(~, ~), dimensionless concentration of passivie impurity; Q0, maximum amount of passive 
impurity lost by the vortex during the entire time of self-similar motion. 
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MODIFIED BOUNDARY CONDITIONS FORTWO-DIMENSIONAL GASDYNAMIC 

CALCULATIONS IN REGIONS OF ARBITRARY SHAPE WITH MOVING 

BOUNDARIES PRESENT 

G. S. Romanov and V. V. Urban UDC 533.6 

Boundary conditions enabling one to improve the accuracy, convergence, and economy 
on numerical calculations are discussed. 

Numerical calculations of gasdynamic flows in regions with arbitrary curved boundaries are 
greatly complicated by the difficulties of constructing the finite-difference grid (coordinate 
system) and approximating the boundary conditions. Because of this, much interest has recently 
been devoted to the investigation of ways of generating coordinate systems, accomplished, e.g., 
using conformal and quasiconformal transformations, elliptic equations, and algebraic trans- 
formations [i, 2]. Several ways of automating the distribution of the coordinate lines and 
monitoring them have been determined and a theoretical study of the errors introduced into the 
solution by arbitrary coordinate systems has begun. Nevertheless, the construction of a "good" 
coordinate system in regions of arbitrary shape where the boundary conditions are easily 
assigned is still a difficult problem of independent importance. Therefore, the search for 
ways of using simpler procedures to describe curved boundaries and assign boundary conditions 
is timely~ 

Below we consider a method of calculating boundary cells obtained by superposing an 
irregular orthogonal grid onto boundaries of arbitrary shape, already proposed in the period 
of the first computer calculations, according to [3]. Detailed information about this so- 
called method of fractional cells is contained in [4], where the necessary calculating 
equations are given. Work is known in which modified boundary conditions were introduced with- 
in the framework of the method of fractional cells. Thus, in [5] a moving undeformed 
boundary, a piston, is introduced along one of the coordinate axes, and the number of types 
of fractional cells is reduced to two using an irregular orthogonal grid. A more universal 
method of calculating curved boundaries moving arbitrarily over a grid was proposed in [6]. 
In this case conservative equations for boundary purposes and fractional cells are used in 
[5, 6]. In [5, 7] the condition of nonpenetration at the fixed curved boundaries is supple- 
mented by the condition of stream slippage, realized through reorganization of the velocity 
vector in the fractional cells. 

The aim of the present work is to clarify the role of the boundary conditions at curved 
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